What is Spinach and what does it do?

Ilya Kuprov
University of Southampton

Spinach package

- Magnetic resonance theory library for large-scale time-domain simulation work

Ubiquitin: 76 amino acids, 1060 magnetic nuclei, about 60,000 spin-spin couplings

NOESY: needs full Redfield superoperator, including cross-correlations

Downloads, documentation, tutorials, lectures - http://spindynamics.org
Spinach package

- Magnetic resonance theory library for **large-scale** time-domain simulation work
- All types of magnetic resonance (NMR, EPR, MRI, DNP, PHIP, SQUID, etc.)
- + kinetics, diffusion, hydrodynamics, spatial encoding, off-resonance soft pulses, etc.

A

B

frequency, MHz

Downloads, documentation, tutorials, lectures - http://spindynamics.org

Spinach package

- Magnetic resonance theory library for **large-scale** time-domain simulation work
- All types of magnetic resonance (NMR, EPR, MRI, DNP, PHIP, SQUID, etc.)
- Over 600 pages of docs and tutorials, over 100 real-life simulation examples
- +PhD level spin dynamics lecture course (50 hours of video, 200 pages of handouts)

Downloads, documentation, tutorials, lectures - http://spindynamics.org
Spinach package

- Magnetic resonance theory library for large-scale time-domain simulation work
- All types of magnetic resonance (NMR, EPR, MRI, DNP, PHIP, SQUID, etc.)
- Over 600 pages of docs and tutorials, over 100 real-life simulation examples
- Well-annotated open-source code, clear variable names, informative error messages

Code quality and readability enforcement is militant – the validation block in most functions is longer than the science block.

function fid=hyscore(spin_system,parameters,H,R,K)
% Check consistency
grumble(spin_system,parameters,H,R,K);
% Compose Liouvillian
L=H+1i*R+1i*K;
% Get the pulse operators
Lp=operator(spin_system,'L+','E');
Lm=operator(spin_system,'L-','E');
Lx=(Lp+Lm)/2;
% Calculate timestep and number of steps for tau evolution
[tau_dt,tau_np]=stepsize(L,parameters.tau);
% Apply the first pulse
rho=step(spin_system,Lx,parameters.rho0,pi/2);
% Run the tau evolution
rho=evolution(spin_system,L,[],rho,tau_dt,tau_np,'final');
% Apply the second pulse
rho=step(spin_system,Lx,rho,pi/2);
% Apply coherence filter
rho=coherence(spin_system,rho,{{'E',0}});
% Run the indirect dimension evolution
rho_stack=evolution(spin_system,L,[],rho,1/parameters.sweep,...
parameters.nsteps(1)-1,'trajectory');

We do not actually need to open any of the Kronecker products in spin physics.

\[[A \otimes B]v = \text{vec}(BVA') \]
\[\text{exp}(A)v = \sum_{n=0}^{\infty} \frac{1}{n!} (A(A...(A(Av)))) \]
Spinach package

- Magnetic resonance theory library for **large-scale** time-domain simulation work
- All types of magnetic resonance (NMR, EPR, MRI, DNP, PHIP, SQUID, etc.)
- Over 600 pages of docs and tutorials, over 100 real-life simulation examples
- Well-annotated open-source code, clear variable names, informative error messages
- Parallel processing, GPU support, tensor structured object support
- Over 50 developers and contributors, 12 years of full-time programming

Downloads, documentation, tutorials, lectures - http://spindynamics.org

Last 6 months: classical degrees of freedom

The evolution happens in the direct product of spin and lab spaces:

\[\text{dim} \approx 1000 \times 100 \times 100 \times 100 \]

However... all terms in the evolution generator have a kron structure:

\[[\text{space dynamics}] \otimes [\text{reaction kinetics}] \otimes [\text{spin dynamics}] \]

...and the components are krons themselves, e.g.

\[
D \left(\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) = D \left(\frac{\partial^2}{\partial x^2} \right) \otimes \mathbf{1}_y \otimes \mathbf{1}_z + \frac{\partial^2}{\partial y^2} \otimes \mathbf{1}_x \otimes \mathbf{1}_z + \mathbf{1}_y \otimes \mathbf{1}_x \otimes \frac{\partial^2}{\partial z^2} \right)
\]

It is only when you multiply the krons out that you run out of memory.
Last 6 months: classical degrees of freedom

Chemical degrees of freedom are another kron:

\[
\frac{d}{dt} \rho_{\text{a}} = \left[-i \left(\begin{array}{cc} H_A & 0 \\ 0 & H_B \end{array} \right) + \left(\begin{array}{cc} R_A & 0 \\ 0 & R_B \end{array} \right) + \left(\begin{array}{cc} -k_{\text{A}} & 1 \\ 1 & -k_{\text{B}} \end{array} \right) \right] \rho_{\text{a}}
\]

The result is a sum of krons repeatedly acting on a vector:

\[
\rho(t + dt) = \exp \left\{ -i \left[\text{a sum of krons} \right] dt \right\} \rho(t)
\]

\[
\exp[A]v = \sum_{n=0}^{\infty} \frac{1}{n!} A \left(A(Av) \right)
\]

A short sum of krons of small matrices! Need a product with a vector...

\[
\dim[A] = 1000 \\
\dim[B] = 1000 \\
\dim[A(x)B] = 10^4 \\
\text{numel}(v) = 10^6
\]

\[
[AB]v = \text{vec} \left[BVA^T \right]
\]

\[
\text{dim}[A] = 1000 \\
\text{dim}[B] = 1000 \\
\text{dim}[V] = 1000
\]

We do not actually need to open any Kronecker products in spin dynamics...

Last 6 months: classical degrees of freedom

Synthetic benchmark (random matrices with typical NMR density):

<table>
<thead>
<tr>
<th>Matrix-vector multiplication task</th>
<th>Wall clock time, polyadic rep</th>
<th>Wall clock time, explicit rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>([AB]v) with ([A,B] \leq 64), full</td>
<td>0.37 ± 0.01 ms</td>
<td>0.68 ± 0.12 ms</td>
</tr>
<tr>
<td>([ABC]v) with ([A,C] \leq 64), full</td>
<td>1.5 ± 0.3 ms</td>
<td>Out of RAM</td>
</tr>
<tr>
<td>([ABC]v) with ([A,C] \leq 64), full</td>
<td>17 ± 14 ms</td>
<td>Out of RAM</td>
</tr>
<tr>
<td>([AB]v) with ([A,B] \leq 64), sparse</td>
<td>0.21 ± 0.01 ms</td>
<td>0.05 ± 0.01 ms</td>
</tr>
<tr>
<td>([ABC]v) with ([A,C] \leq 64), sparse</td>
<td>2.1 ± 0.3 ms</td>
<td>11.4 ± 1.6 ms</td>
</tr>
<tr>
<td>([AB]v) with ([A,B] \leq 64), sparse</td>
<td>105 ± 14 ms</td>
<td>Out of RAM</td>
</tr>
</tbody>
</table>

Computer:
32 Xeon cores
256 GB of RAM

Not faster for small systems, but scales much better.

2D and 3D localised NMR excitation with an explicit shaped pulse under a field gradient, a typical metabolite (6 spins).

with Ahmed Allami and Maria Grazia Concilio
Last 6 months: classical degrees of freedom

Result: arbitrary spatial dynamics with quantum description of spin.

All other packages (MRI, DOSY, etc.) use Bloch equations in the spin subspace.

with Ahmed Allami and Pavan Lally

Last 6 months: classical degrees of freedom

Rotenone (22 spins), three-dimensional diffusion, complicated chirps, etc.

First dimension: UF SPEN
Second dimension: DOSY
Third dimension: crushers

Simulation time: hours – we are done!

with Jean-Nicolas Dumez and Ludmilla Guduff
Spinach package

- Latest version of Matlab is strongly recommended.

Spinach capabilities

- Long-lived state detection
- Tensor structured formats
- Spin system trajectory analysis
- Coupling tensor visualization
- General rotation matrix
- Isotropic, axial and tensorial diffusion correlation functions
- Hilbert space, Liouville space, Fock/Purcell space
- Accurate thermal equilibria and thermalization
- Polynomial complexity scaling in liquid state NMR
- Parallelization and GPU support
- Arbitrary user-defined pulse sequences
- Common 1D and 2D experiments
- NMR, INNIR, and EPR
- SLE and FP relaxation theories
- High-field and multi-echo systems
- Spin Chemistry experiments

- Spin Hamiltonian
- Thermal equilibrium state
- Relaxation superoperator
- Exponential propagator
- System trajectory
- Project out the observables

Time domain simulation flowchart

1. Gather spin system, instrument and experiment parameters
2. Generate spin Hamiltonian
3. Generate relaxation superoperator
4. Generate exponential propagator
5. Obtain system trajectory
6. Project out the observables

Spinach is not a black box — it is an open-source Matlab library of infrastructure functions.

If you are using Spinach, this is the only thing you would need to do manually.
What you need to provide

Zeeman interactions

\[\hat{H} = \hat{H}_Z + \hat{H}_{\text{NN}} + \hat{H}_{\text{EN}} + \hat{H}_{\text{EE}} + \hat{H}_{\text{MW}} \]

electron-nuclear interactions

microwave and radiofrequency terms

inter-nuclear and quadrupolar interactions

inter-electron interactions and zero-field splitting

Zeeman interactions: chemical shielding tensors for nuclei and \(g \)-tensors for electrons.

Where to get: from the literature or from quantum chemistry packages (Gaussian, CASTEP, ORCA, etc.).

\[\hat{H}_Z = \sum_k \tilde{B}_0 \cdot \mathbf{A}_E^{(k)} \cdot \hat{E}^{(k)} + \sum_k \tilde{B}_0 \cdot \mathbf{A}_N^{(k)} \cdot \hat{N}^{(k)} \]

GIAO DFT B3LYP/cc-pVTZ or similar is generally accurate for small CHNO molecules.

N.B.: Despite the common "scalar coupling" moniker, \(J \)-coupling is actually a tensor too.
What you need to provide

- Zeeman interactions
- Electron-nuclear interactions: isotropic (aka Fermi contact) and anisotropic hyperfine couplings.
- Microwave and radiofrequency terms
- Inter-electron interactions
- Inter-nuclear and quadrupolar interactions
- Inter-electron interactions and zero-field splitting

Electron-nuclear interactions: isotropic (aka Fermi contact) and anisotropic hyperfine couplings.

Where to get: literature or DFT (requires specialized basis sets). For remote electron-nuclear pairs (10 Angstroms or more), Cartesian coordinates.

\[
\hat{H}_{EN} = \sum_{j,k} \hat{E}_j \cdot \hat{\mathbf{A}}_{EN}^{(j,k)} \cdot \hat{N}_k
\]

Note the strong directionality of some HFC tensors.

\[N.B.: \text{“anisotropic hyperfine” and “electron-nuclear dipolar” interactions are the same thing.} \]

What you need to provide

- Zeeman interactions
- Electron-nuclear interactions
- Microwave and radiofrequency terms
- Inter-electron interactions
- Inter-nuclear and quadrupolar interactions
- Inter-electron interactions and zero-field splitting

Inter-electron interactions: exchange interaction, zero field splitting, inter-electron dipolar interactions.

Where to get: literature or DFT for exchange coupling and ZFS. Dipolar couplings are most conveniently extracted from Cartesian coordinates of the spins.

\[
\hat{H}_{EE} = 2 \pi \sum_{j<k} J^{(j,k)}_{EE} \left(\hat{E}_j \cdot \hat{\mathbf{E}}_k \right) + \sum_{j,k} \hat{E}_j \cdot \hat{\mathbf{A}}^{(j,k)}_{ZFS} \cdot \hat{E}_k - \frac{\mu_0}{4\pi} \sum_{j<k} \left(\frac{r_{jk}^{(j,k)} h}{r_{jk}^3} \right) \left(3(\hat{E}_j \cdot \hat{r}_{jk})(\hat{E}_k \cdot \hat{r}_{jk}) - r_{jk}^2 (\hat{E}_j \cdot \hat{E}_k) \right)
\]

\[N.B.: \text{the practical accuracy of DFT for exchange coupling and particularly ZFS is very low.} \]
What you need to provide

Zeeman interactions

\[\hat{H} = \hat{H}_Z + \hat{H}_{NN} + \hat{H}_{EN} + \hat{H}_{EE} + \hat{H}_{MW} \]

electron-nuclear interactions

microwave and radiofrequency terms

inter-nuclear and quadrupolar interactions

inter-electron interactions and zero-field splitting

Microwave and radiofrequency terms: amplitude coefficients in front of the \(L_x \) and \(L_y \) terms in the Hamiltonian.

Where to get: from the pulse calibration curves of the instrument. The RF/MW power (in Hz) is equal to the reciprocal width of the 360-degree pulse.

\[\hat{H}_{MW} = \cos(\omega_{MW} t) \sum_k a_{MW}^{(k)} \hat{E}^{(k)}_X \]

(N.B.: the direction of the \(B_1 \) field in most MAS experiments is parallel to the spinning axis.)

Time domain simulation mathematics

\[\hat{H}(t) = \hat{H}_0 + \sum a_k(t) \hat{H}_k \]

\[\hat{L}(t) = \hat{H}(t) + i\hat{R} + i\hat{K} \]

\[\hat{\rho}(t + dt) = \exp[-i\hat{L}(t)dt] \hat{\rho}(t) \]

\[\hat{\rho}_m = \frac{\exp(-\hat{H}_0/kT)}{\text{Tr}[\exp(-\hat{H}_0/kT)]} \]

Spinach kernel provides all operators and states

The mathematics is quite simple: apply this equation with some small step \(dt \) until you are done!

\[f(t) = \langle \hat{f} | \hat{\rho}(t) \rangle \]

\[\bar{f} = \frac{1}{|\Omega|} \int f(\alpha, \beta, \gamma) d\Omega \]

Powder averages are slow, but not hard.

N.B.: this mathematics is hidden from casual users, but the code is open source.
Spinach architecture

Simple NMR simulations in *Spinach*

```plaintext
% Spin system
sys.magnet=3.4;
sys.isotopes={'1H', '1H'};

% Zeeman interactions
inter.zeeman.scalar=[1.5 2.4];

% J-couplings
inter.coupling.scalar=[0.0 7.4 0.0 0.0];

% Coordinates
inter.coordinates=[[0.0 0.0 0.0] [0.0 2.0 0.0]];

% Simulation formalism
bas.formalism='sphten-liouv';
bas.approximation='none';

% Relaxation theory
inter.relaxation='redfield';
inter.equilibrium='levitt';
inter.rlx_keep='secular';
inter.temperature=298;
inter.tau_c=10^-12;
```

Spinach has a very detailed input checker – if something is amiss, it would tell you.
Simple NMR simulations in Spinach

% System specification
sys.magnet=9.4;
sys.isotopes={'14N'};
inter.coupling.eigs={[-1e6 -2e6 3e6]};
inter.coupling.euler={[0.0 0.0 0.0]};

DOR and MAS quadrupolar NMR

Powder averaging is an expensive operation, but it runs in parallel.

Spinach developer team

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed Allami</td>
<td>University of Southampton</td>
<td>SPEN module</td>
</tr>
<tr>
<td>tutor@ucsf.edu</td>
<td>University of California, San Francisco</td>
<td>SPEN module</td>
</tr>
<tr>
<td>Hristina Armoni</td>
<td>Harvard University</td>
<td>Protein and RNA modules</td>
</tr>
<tr>
<td>Antonio Biscarini</td>
<td>UCL</td>
<td>SpinsIML and BiNMR</td>
</tr>
<tr>
<td>Anastasia Boston</td>
<td>Harvard University</td>
<td>Protein and RNA modules</td>
</tr>
<tr>
<td>Alice Bowser</td>
<td>University of Oxford</td>
<td>Pulsed digital EPR sequences</td>
</tr>
<tr>
<td>Luca Brinda</td>
<td>University of Cambridge</td>
<td>NMR data reduction</td>
</tr>
<tr>
<td>Marko Cumerotti</td>
<td>University of Southern California</td>
<td>Overtone and solid state NMR module</td>
</tr>
<tr>
<td>Gareth Durnin</td>
<td>University of Oxford</td>
<td>PINET module, NMR experiments</td>
</tr>
<tr>
<td>Tim Gaitzoff</td>
<td>University of Oxford</td>
<td>Subroutine theory examples</td>
</tr>
<tr>
<td>Marketa Cincio</td>
<td>University of Southern California</td>
<td>ESR examples, SPEN NMR module</td>
</tr>
<tr>
<td>Marketa Cincio</td>
<td>University of Southern California</td>
<td>continuous NMR examples</td>
</tr>
<tr>
<td>Ben Cooper</td>
<td>Gothenburg University</td>
<td>SNP examples</td>
</tr>
<tr>
<td>Sergey Dolgikh</td>
<td>University of Bath</td>
<td>Human brain modules</td>
</tr>
<tr>
<td>Jean-Michel Dumez</td>
<td>Paris-Sud University</td>
<td>Ultraslow NMR experiments</td>
</tr>
</tbody>
</table>

SPEN module: Ahmed Allami, Maria Grazia Concilio